Get the Most Recent Databricks Databricks-Generative-AI-Engineer-Associate Exam Questions for Guaranteed Success
Customizable Databricks Databricks-Generative-AI-Engineer-Associate practice exams (desktop and web-based) of Prep4King are designed to give you the best learning experience. You can attempt these Databricks-Generative-AI-Engineer-Associate practice tests multiple times till the best preparation for the Databricks Certified Generative AI Engineer Associate (Databricks-Generative-AI-Engineer-Associate) test. On every take, our Databricks Databricks-Generative-AI-Engineer-Associate practice tests save your progress so you can view it to see and strengthen your weak concepts easily.
Databricks Databricks-Generative-AI-Engineer-Associate Exam Syllabus Topics:
Topic
Details
Topic 1
Topic 2
Topic 3
>> Braindumps Databricks-Generative-AI-Engineer-Associate Downloads <<
Databricks-Generative-AI-Engineer-Associate Valid Study Plan - Databricks-Generative-AI-Engineer-Associate Exam Reference
Before making a final purchase, Prep4King customers can try the features of the Databricks-Generative-AI-Engineer-Associate practice material with a free demo. If a customer purchases our Databricks-Generative-AI-Engineer-Associate exam preparation material, we will provide them with Free Databricks-Generative-AI-Engineer-Associate Exam Questions updates for up to 1 year. If the Databricks-Generative-AI-Engineer-Associate certification test content changes after your purchase within 1 year, you will instantly get free real questions updates.
Databricks Certified Generative AI Engineer Associate Sample Questions (Q47-Q52):
NEW QUESTION # 47
After changing the response generating LLM in a RAG pipeline from GPT-4 to a model with a shorter context length that the company self-hosts, the Generative AI Engineer is getting the following error:
What TWO solutions should the Generative AI Engineer implement without changing the response generating model? (Choose two.)
Answer: D,E
Explanation:
* Problem Context: After switching to a model with a shorter context length, the error message indicating that the prompt token count has exceeded the limit suggests that the input to the model is too large.
* Explanation of Options:
* Option A: Use a smaller embedding model to generate- This wouldn't necessarily address the issue of prompt size exceeding the model's token limit.
* Option B: Reduce the maximum output tokens of the new model- This option affects the output length, not the size of the input being too large.
* Option C: Decrease the chunk size of embedded documents- This would help reduce the size of each document chunk fed into the model, ensuring that the input remains within the model's context length limitations.
* Option D: Reduce the number of records retrieved from the vector database- By retrieving fewer records, the total input size to the model can be managed more effectively, keeping it within the allowable token limits.
* Option E: Retrain the response generating model using ALiBi- Retraining the model is contrary to the stipulation not to change the response generating model.
OptionsCandDare the most effective solutions to manage the model's shorter context length without changing the model itself, by adjusting the input size both in terms of individual document size and total documents retrieved.
NEW QUESTION # 48
A Generative Al Engineer interfaces with an LLM with prompt/response behavior that has been trained on customer calls inquiring about product availability. The LLM is designed to output "In Stock" if the product is available or only the term "Out of Stock" if not.
Which prompt will work to allow the engineer to respond to call classification labels correctly?
Answer: B
Explanation:
* Problem Context: The Generative AI Engineer needs a prompt that will enable an LLM trained on customer call transcripts to classify and respond correctly regarding product availability. The desired response should clearly indicate whether a product is "In Stock" or "Out of Stock," and it should be formatted in a way that is structured and easy to parse programmatically, such as JSON.
* Explanation of Options:
* Option A: Respond with "In Stock" if the customer asks for a product. This prompt is too generic and does not specify how to handle the case when a product is not available, nor does it provide a structured output format.
* Option B: This option is correctly formatted and explicit. It instructs the LLM to respond based on the availability mentioned in the customer call transcript and to format the response in JSON.
This structure allows for easy integration into systems that may need to process this information automatically, such as customer service dashboards or databases.
* Option C: Respond with "Out of Stock" if the customer asks for a product. Like option A, this prompt is also insufficient as it only covers the scenario where a product is unavailable and does not provide a structured output.
* Option D: While this prompt correctly specifies how to respond based on product availability, it lacks the structured output format, making it less suitable for systems that require formatted data for further processing.
Given the requirements for clear, programmatically usable outputs,Option Bis the optimal choice because it provides precise instructions on how to respond and includes a JSON format example for structuring the output, which is ideal for automated systems or further data handling.
NEW QUESTION # 49
A Generative Al Engineer is creating an LLM system that will retrieve news articles from the year 1918 and related to a user's query and summarize them. The engineer has noticed that the summaries are generated well but often also include an explanation of how the summary was generated, which is undesirable.
Which change could the Generative Al Engineer perform to mitigate this issue?
Answer: C
Explanation:
To mitigate the issue of the LLM including explanations of how summaries are generated in its output, the best approach is to adjust the training or prompt structure. Here's why Option D is effective:
* Few-shot Learning: By providing specific examples of how the desired output should look (i.e., just the summary without explanation), the model learns the preferred format. This few-shot learning approach helps the model understand not only what content to generate but also how to format its responses.
* Prompt Engineering: Adjusting the user prompt to specify the desired output format clearly can guide the LLM to produce summaries without additional explanatory text. Effective prompt design is crucial in controlling the behavior of generative models.
Why Other Options Are Less Suitable:
* A: While technically feasible, splitting the output by newline and truncating could lead to loss of important content or create awkward breaks in the summary.
* B: Tuning chunk sizes or changing embedding models does not directly address the issue of the model's tendency to generate explanations along with summaries.
* C: Revisiting document ingestion logic ensures accurate source data but does not influence how the model formats its output.
By using few-shot examples and refining the prompt, the engineer directly influences the output format, making this approach the most targeted and effective solution.
NEW QUESTION # 50
A Generative AI Engineer is building a Generative AI system that suggests the best matched employee team member to newly scoped projects. The team member is selected from a very large team. Thematch should be based upon project date availability and how well their employee profile matches the project scope. Both the employee profile and project scope are unstructured text.
How should the Generative Al Engineer architect their system?
Answer: B
Explanation:
* Problem Context: The problem involves matching team members to new projects based on two main factors:
* Availability: Ensure the team members are available during the project dates.
* Profile-Project Match: Use the employee profiles (unstructured text) to find the best match for a project's scope (also unstructured text).
The two main inputs are theemployee profilesandproject scopes, both of which are unstructured. This means traditional rule-based systems (e.g., simple keyword matching) would be inefficient, especially when working with large datasets.
* Explanation of Options: Let's break down the provided options to understand why D is the most optimal answer.
* Option Asuggests embedding project scopes into a vector store and then performing retrieval using team member profiles. While embedding project scopes into a vector store is a valid technique, it skips an important detail: the focus should primarily be on embedding employee profiles because we're matching the profiles to a new project, not the other way around.
* Option Binvolves using a large language model (LLM) to extract keywords from the project scope and perform keyword matching on employee profiles. While LLMs can help with keyword extraction, this approach is too simplistic and doesn't leverage advanced retrieval techniques like vector embeddings, which can handle the nuanced and rich semantics of unstructured data. This approach may miss out on subtle but important similarities.
* Option Csuggests calculating a similarity score between each team member's profile and project scope. While this is a good idea, it doesn't specify how to handle the unstructured nature of data efficiently. Iterating through each member's profile individually could be computationally expensive in large teams. It also lacks the mention of using a vector store or an efficient retrieval mechanism.
* Option Dis the correct approach. Here's why:
* Embedding team profiles into a vector store: Using a vector store allows for efficient similarity searches on unstructured data. Embedding the team member profiles into vectors captures their semantics in a way that is far more flexible than keyword-based matching.
* Using project scope for retrieval: Instead of matching keywords, this approach suggests using vector embeddings and similarity search algorithms (e.g., cosine similarity) to find the team members whose profiles most closely align with the project scope.
* Filtering based on availability: Once the best-matched candidates are retrieved based on profile similarity, filtering them by availability ensures that the system provides a practically useful result.
This method efficiently handles large-scale datasets by leveragingvector embeddingsandsimilarity search techniques, both of which are fundamental tools inGenerative AI engineeringfor handling unstructured text.
* Technical References:
* Vector embeddings: In this approach, the unstructured text (employee profiles and project scopes) is converted into high-dimensional vectors using pretrained models (e.g., BERT, Sentence-BERT, or custom embeddings). These embeddings capture the semantic meaning of the text, making it easier to perform similarity-based retrieval.
* Vector stores: Solutions likeFAISSorMilvusallow storing and retrieving large numbers of vector embeddings quickly. This is critical when working with large teams where querying through individual profiles sequentially would be inefficient.
* LLM Integration: Large language models can assist in generating embeddings for both employee profiles and project scopes. They can also assist in fine-tuning similarity measures, ensuring that the retrieval system captures the nuances of the text data.
* Filtering: After retrieving the most similar profiles based on the project scope, filtering based on availability ensures that only team members who are free for the project are considered.
This system is scalable, efficient, and makes use of the latest techniques inGenerative AI, such as vector embeddings and semantic search.
NEW QUESTION # 51
A Generative Al Engineer is developing a RAG application and would like to experiment with different embedding models to improve the application performance.
Which strategy for picking an embedding model should they choose?
Answer: B
Explanation:
The task involves improving a Retrieval-Augmented Generation (RAG) application's performance by experimenting with embedding models. The choice of embedding model impacts retrieval accuracy,which is critical for RAG systems. Let's evaluate the options based on Databricks Generative AI Engineer best practices.
* Option A: Pick an embedding model trained on related domain knowledge
* Embedding models trained on domain-specific data (e.g., industry-specific corpora) produce vectors that better capture the semantics of the application's context, improving retrieval relevance. For RAG, this is a key strategy to enhance performance.
* Databricks Reference:"For optimal retrieval in RAG systems, select embedding models aligned with the domain of your data"("Building LLM Applications with Databricks," 2023).
* Option B: Pick the most recent and most performant open LLM released at the time
* LLMs are not embedding models; they generate text, not embeddings for retrieval. While recent LLMs may be performant for generation, this doesn't address the embedding step in RAG. This option misunderstands the component being selected.
* Databricks Reference: Embedding models and LLMs are distinct in RAG workflows:
"Embedding models convert text to vectors, while LLMs generate responses"("Generative AI Cookbook").
* Option C: Pick the embedding model ranked highest on the Massive Text Embedding Benchmark (MTEB) leaderboard hosted by HuggingFace
* The MTEB leaderboard ranks models across general tasks, but high overall performance doesn't guarantee suitability for a specific domain. A top-ranked model might excel in generic contexts but underperform on the engineer's unique data.
* Databricks Reference: General performance is less critical than domain fit:"Benchmark rankings provide a starting point, but domain-specific evaluation is recommended"("Databricks Generative AI Engineer Guide").
* Option D: Pick an embedding model with multilingual support to support potential multilingual user questions
* Multilingual support is useful only if the application explicitly requires it. Without evidence of multilingual needs, this adds complexity without guaranteed performance gains for the current use case.
* Databricks Reference:"Choose features like multilingual support based on application requirements"("Building LLM-Powered Applications").
Conclusion: Option A is the best strategy because it prioritizes domain relevance, directly improving retrieval accuracy in a RAG system-aligning with Databricks' emphasis on tailoring models to specific use cases.
NEW QUESTION # 52
......
We have a large number of regular customers exceedingly trust our Databricks Certified Generative AI Engineer Associate practice materials for their precise content about the exam. You may previously have thought preparing for the Databricks-Generative-AI-Engineer-Associate practice exam will be full of agony, actually, you can abandon the time-consuming thought from now on. Our practice materials can be understood with precise content for your information, which will remedy your previous faults and wrong thinking of knowledge needed in this exam. As a result, many customers get manifest improvement and lighten their load by using our Databricks-Generative-AI-Engineer-Associate practice materials. Up to now, more than 98 percent of buyers of our practice materials have passed it successfully. Databricks-Generative-AI-Engineer-Associate practice materials can be classified into three versions: the pdf, the software and the app version. So we give emphasis on your goals, and higher quality of our Databricks-Generative-AI-Engineer-Associate practice materials.
Databricks-Generative-AI-Engineer-Associate Valid Study Plan: https://www.prep4king.com/Databricks-Generative-AI-Engineer-Associate-exam-prep-material.html
🎬 Your Details Have Been Submitted Successfully.
👉 Our team will contact you shortly.
Meanwhile, you can connect with us instantly below: